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ExaCT: Combustion Co-Design

Exascale Center for Combustion in Turbulence (ExaCT)
is one of three exascale co-design centers

Combustion accounts for 85% of the energy used in the
US

— Highly efficient combustion systems will help us meet the
80% reduction target of greenhouse gas emissions by 2050

SMC is a proxy app for the S3D combustion simulation

— 8t order finite difference code

— Simulates chemistry interactions: 50+ species is the
exascale target



Motivation for Analytic Model

* Answer co-design questions acquired from Fast
Forward vendors

 Hardware implications

— Assess baseline hardware requirements of combustion
simulations

— Make preliminary recommendations on architectural
design choices and give feedback to vendors
e Software implications

— Quickly explore software optimizations and their
interaction with hardware trade-offs

— Guide development of advance programming models and
runtimes for combustion codes



ExaSAT: Exascale Static Analysis Tool

e Can automatically predict performance for many input codes
and software optimizations

* Predict performance under different architectural scenarios
* Much faster than hardware simulation and manual modeling
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Performance Metrics

* The list of metrics that we used for evaluating various
hardware components and software optimizations

Metric Corresponding Analysis

Working Set Size Data reuse strategies for filtering memory bandwidth

FP instruction mix, special hardware, & benefits of

Arithmetic Operations N
vectorization

Fraction of Communication On-node vs off-node data movement



SMC code
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Even though transcendentals and division ops might be low in count, they can dominate the CPU time




Number of Accesses

Registers and L1 Cache Traffic
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Accesses to state variables that do not reside in a register result in additional
L1 cache traffic

Most (>95%) of the L1 cache traffic in chemistry code is from state variable
accesses, and not the streaming data variables
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Loop Fusion Dependency Graph
for CNS code
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Impact of Software Optimization on
CNS and SMC Dynamics

Software Optimization Impact on
Byte to Flop Ratio vs. Cache Size
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Estimated Performance Improvements
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Neither software optimizations alone nor hardware optimizations alone will not

get us to the exascale, we have to apply both. 1



16K Network End Points
Communication Times on Different Topologies
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* Analytical model assumes the ideal network (dashed lines), we used SST/macro simulator to observe
the performance impact of network topology

* Torus-like topologies are better-suited to combustion codes
 Job placement improves performance if topology-aware scheduling is used

— Block: sequential numbering of ranks on sequential nodes

— Random mixes up the ranks
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Programming Model Design

Leverage the lessons learned from ExaSAT in programming model
design in context of combustion

— Lightweight performance model identifies valuable software
optimizations (and their hardware requirements) for compiler and
adaptive runtime

— Helps find optimal tuning parameters (e.g. blocking factor)
Offer two modes of parallelism and cover all cases covered by
SPMD but improve analyzability

— Data parallel: Focus on expression of hierarchy and topology of data
through ftiling for locality and data movement

— Task parallel: Focus on use of functional semantics for each task,
enables asynchronous pipeline parallelism

Embed data parallel unit within a task container

— For example in AMR one task container per “box”, and then within that
have a data parallel threads to parallelize operation on each box



Data Layout

Adopt a data-centric model

— Describe how the data is laid out on the system and
apply the computation to the data where it resides

Use these language constructs to transfer
information from the programmer to compiler
and runtime

Tiling can be expressed in the data structure
— For example: HTA, HDFS5

A tile represent an independent unit of worlk,

which becomes a task, more coarse grain than
single iteration
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Intelligent Adaptive Runtime

* Conduct dataflow analysis of program

— Dynamically map tasks and data to locations to improve
load balance and while minimizing data movement

— Co-locate tasks of different types to increase concurrency
and minimize contention of shared resources (memory
bandwidth, cache footprint, ALUs)

* Tune aggresiveness of tiling and fusion optimizations

— Can choose parameters based on environment (e.g.
available shared L3 cache)

* Automate movement of data between disjoint address
spaces (e.g. local stores)



Multiple Tasks per Location

Single-task mapping Multi-task Mapping

* OpenMP parallelizes each task over a whole processor

 Map multiple tasks to different sized subsets of cores in
a single processor

— Scheduler can be aware of both topology and
heterogeneity

e Automate this process using static analysis



AMR Box Dependency and
Communications Analysis
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From list of boxes, determine data dependencies and
communications requirements for AMR code

Use box index set operations (e.g. intersect, set difference) to
determine required data exchange

Can experiment with different data distributions
Collaborating with SST/Macro group to simulate communications



